Complex Numbers (Year 1)

The definition of i				
definition of t	Examples			
Example 1	Example 2	Example 3		
Simplify:	Simplify:	Simplify:		
i ⁵²	i ³¹	$\sqrt{-10} \sqrt{-40}$		
$=(i^2)^{26}$	$=i^{30}i$	$\sqrt{-10} \sqrt{-40}$		
		$=\sqrt{10}\sqrt{-1}\times\sqrt{40}\sqrt{-1}$		
$=(-1)^{26}$	$=(i^2)^{15}i$	$=\sqrt{10}i \times \sqrt{40}i$		
		$=\sqrt{400}i^2$		
0	$=(-1)^{15}i$	= (20)(-1) = -20		
		Do not make the mistake		
= 1	=-i	$\sqrt{-10}\sqrt{-40} = \sqrt{400} = 20$		
	Simplify: i^{52} $= (i^2)^{26}$			

Examples

(3-8i)+(3+8i)= 6

= 7 - 5i

 $(z+w)^* = 7 + 5i$

Find the value of a if

We usually use the letter z to denote a complex number $z = \text{real part} \pm i \text{ (imaginary part)}$

Note: This can also be written as $z = \text{real part} \pm (\text{imaginary part}) i$

We usually use the letters a and b or x and vz = a + ib or z = x + iyAddition/Subtraction

When we add/subtract we combine the real parts and then the imaginary	Example 1: Addition		Exa	mple 2: Subtraction
parts	Simplify:	Si	implify	$z_1 = 2 + 3i, z_2 = -3 +$
Adding:	(3-2i)+(4+3i)	(3 - 2i)	(1) - (4 + 3i)	Find $z_1 - z_2$
(a + bi) + (c + di) = (a + c) + (b + d)i	(3-2i)+(4+3i)	(3-2i))-(4+3i)	(2+3i)-(-3+5i)
Subtracting:	=(3+4)+(-2+3)i	= (3 -	4) + (-2 -	=(2-3)+(3-5)
(a + bi) - (c + di) = (a - c) + (b - d)i	=7+i		3) <i>i</i>	=5-2i
		= -	-1 - 5i	
Multiplication/Division		Exam	ples	

	Example 1: Multiplication	E	cample 2: Division
Multiplying: $(a+bi)(c+di) = ac + adi + cbi - bd$	Simplify: $(3-2i)(4+3i)$		Simplify: $\frac{3-2i}{4+3i}$
Dividing: $\frac{a+ib}{c+id}$ Multiply by the complex conjugate of the denominator $\frac{a+ib}{c+id} \times \frac{c-id}{c-id} = \frac{(a+ib)(c-id)}{c^2+d^2}$	$(3-2i)(4+3i)$ $12+9i-8i-6i^{2}$ $=12+9i-8i-6(-1)$ $=18+i$		$ \frac{3-2i}{4+3i} \\ \frac{3-2i}{4+3i} \times \frac{4-3i}{4-3i} \\ \frac{9i-8i-6}{16+9} = \frac{6-17i}{25} \\ = \frac{6}{25} - \frac{17}{25}i $
Complex Conjugate		Examples	
Complex conjugate means we swap the sign of the imaginary part	Example 1	Example 2	Example 3
$a + bi \Rightarrow a - bi$	Find the complex conjugate and	z = 3 - 8i	Given:
$a - bi \Rightarrow a + bi$	modulus of		z = 2 + 3i
Notation: z^* or \bar{z}	z = 2 - 3i	Find $z + z *$	w = 5 - 8i
Conjugate property shortcuts to make your calculations quicker:			Find $(z + w)^*$
$\circ (z \pm w)^* = z^* \pm w^*$	Complex conjugate: $2 + 3\mathbf{i}$	(2 9i) + (2 + 9i)	(z+w)

Equating Real and Imaginary Coefficients (Comparing Coefficients) This method is used to find unknowns in equations in order to solve equations or to find square root

 $Mod = \sqrt{2^2 + (-3)^2} = \sqrt{13}$

Example 1 :	Example 2:	Example 3: Finding Square Roots		
Let $z = x + iy$. Find the values of x and y if $(1 - i)z = 1 - 3i$	Given that $\frac{z}{z-8} = -1 - 2i$. Find z in the form $a + ib$	Find the square roots of $8-6i$		
Let $z = x + iy$ (1 - i)(x + iy) = 1 - 3i	z = (-1 - 2i)(z - 8) Let $z = a + ib$ $a + ib = (-1 - 2i)(a + ib - 8)$ $a + ib = -a - ib + 8 - 2ai + 2b + 16i$	$z = \sqrt{8 - 6i}$ $z^2 = 8 - 6i$ Let $z = x + iy$ $(x + iy)^2 = 8 - 6i$		
x + iy - ix + y = 1 - 3i (x + y) + i(-x + y) = 1 - 3i	a+ib=(-a+2b+8)+i(-b-2a+16) Equating real and imaginary parts gives: $-a+2b+8=a and -b-2a+16=b$	(x+iy)(x+iy) = 8-6i $x^2 + 2xyi - y^2 = 8-6i$ $(x^2 - y^2) + i(2xy) = 8-6i$		
Equating real and imaginary parts gives: x + y = 1 and $-x + y = -3$	Simplifying the above equations further: -2a + 2b = -8 and $-2a - 2b = -16$	Equating real and imaginary parts gives: $x^2 - y^2 = 8$ and $2xy = -6$		
Solving simultaneously gives: $x=2$ and $y=-1$	Solving simultaneously gives: a = 6, b = 2 $\Rightarrow z = 6 + 2i$	Solving simultaneously gives: $x = \pm 3, y = \mp 1,$ $\Rightarrow z_1 = 3 - i \text{ and } z_2 = -3 + i$		
Real Versus Imaginary				

, , , , , , , , , , , , , , , , , , , ,	State the real and	rilla the value of a n
• If a number is imaginary only you will just see an i term : $3i$ is the same as saying $0 + 3i$	imaginary parts of	z = 2 - 2a + (a + 4)i
Proving purely real versus purely imaginary	z = 2 - 3i	is purely imaginary
A real number (purely real) means only consider the real part of the complex number and set the imaginary	Re(z) = 2	Re(z) = 0
part equal to zero.	1	
An imaginary number (purely imaginary) means only consider the imaginary part of the complex number and	Im(z) = -3	2 - 2a = 0
set the real part equal to zero.		a = 1

Factors and Roots

Factorising And Solving Quadratics, Cubics and Quartics

Step 1: Find a factor (usually given a factor). The complex conjugate is also always a factor. Once we know 2 factors, build $z^2 - (\text{sum roots})z + \text{product roots}$ Step 2: To find the remaining factor(s), we can then use either

Algebraic division - divide the polynomial by the factor found above • Compare coefficients – write as factor times a general quadratic or cubic, expand and set coefficients equal

Re(z) means the real part of z and Im(z) means the imaginary part of z

• If a number is **real only** it just means the imaginary part is 0:2 is the same as saying 2+0i

 $(zw)^* = z^*w^*$ (find the conjugate of each and multiply them together)

 $\circ \left(\frac{z}{w}\right)^* = \frac{z^*}{w^*} \text{ if } w \neq 0 \text{ (find the conjugate of each and divide them)}$

 $0 \quad z + z^* = 2Re(z) \text{ and } z - z^* = 2Im(z)$

 $z.z^* = |z|^2$

• Compare coefficients – write as factor times	a general quadratic of cubic, expand and set coefficients equ	101
Example 1: Solving a Quadratic (warm up)	Example 2: Factorising a Cubic	Example 3: Factorising A Quartic
Solve $z^2 + 4z + 8 = 0$	$(z + 2i)$ is a factor of $2z^3 - 3z^2 + 8z - 12$.	Factor $x^4 - 5x^3 + 2x^2 + 22x - 20$
Solve $z^{-} + 4z + 8 = 0$	Find the other two factors and fully factorise	completely, given $3 - i$ is a root
Using quadratic formula	(z + 2i) is a factor and so $-2i$ is a root	$3 - i$ is a root \Rightarrow conjugate $3 + i$ is also a root
	The complex conjugate $+2i$ is also a root	$x^2 - (\text{sum roots})x + \text{product roots}$
$1z^2 + 4z + 8 = 0$ has roots	$z^2 - (\text{sum roots})z + \text{product roots}$	Sum of roots = $3 - i + 3 + i = 6$
	Sum of roots= $2i + (-2i) = 0$	Product of roots= $(3 - i)(3 + i) = 10$
$-4 \pm \sqrt{4^2 - 4(1)(8)}$	Product of roots= $2i(-2i) = -4i^2 = 4$	$x^2 - 6x + 10$
$z = \frac{-4 \pm \sqrt{4^2 - 4(1)(8)}}{2(1)}$	$z^2 - 0z + 4$	
_(-)	2z-3	$\frac{x^2 + x - 2}{x^2 - 6x + 10}$ $x^4 - 5x^3 + 2x^2 + 22x - 20$
$-4 \pm \sqrt{-16}$	$z^2 + 4 2z3 - 3z2 + 8z - 12$	
$z = \frac{-4 \pm \sqrt{-16}}{2}$	$ \begin{array}{rrr} 2z3 & +8z \\ -3z^2 & -12 \end{array} $	$-\frac{(x^4 - 6x^3 + 10x^2)}{x^3 - 8x^2 + 22x - 20}$
2	$-3z^{2}$ -12	
$-4\pm4i$	$\frac{-3z^2}{0}$	$-\frac{(x^3-6x^2+10x)}{-2x^2+12x-20}$
$z = \frac{-4 \pm 4i}{2}$	0	
		$-\frac{(-2x^2+12x-20)}{0}$
$z = -2 \pm 2i$	The other two factors are	Hence, we can write $x^4 - 5x^3 + 2x^2 + 22x - 20$
	(z-2i) and $(2z-3)$	$(x^2 - 6x + 10)(x^2 + x - 2)$
	Fully factorised $2z^3 - 3z^2 + 8z - 12$ looks like $(z^2 + 4)(2z - 3)$	$= (x^2 - 6x + 100)(x - 1)(x + 2)$
Everente 4: Solving A Cubic		Funnals C. Colving A Quartie
Example 4: Solving A Cubic	Example 5: Solving A Quartic	Example 6: Solving A Quartic
The complex number	Example 5: Solving A Quartic Find all complex numbers z, such that:	Given that $(z-1-2i)$ is a factor of
The complex number $x = 1 + 2i$ is a solution of the equation	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a}$	Given that $(z - 1 - 2i)$ is a factor of $2z^3 - 3z^2 + 8z + 5$ solve the equation
The complex number $x=1+2i \text{ is a solution of the equation} \\ x^3-3x^2+7x-5=0. \text{ Find the other solutions.}$	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a}$ solution	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$
The complex number $x = 1 + 2i$ is a solution of the equation $x^3 - 3x^2 + 7x - 5 = 0$. Find the other solutions. $1 - 2i$ is a root $\Rightarrow 1 + 2i$ is also a root	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ $(z-(1+2i))$ is a factor means $1+2i$ is a root
The complex number $x = 1 + 2i$ is a solution of the equation $x^3 - 3x^2 + 7x - 5 = 0$. Find the other solutions. $1 - 2i$ is a root $\Rightarrow 1 + 2i$ is also a root Sum of roots= $1 + 2i + 1 - 2i = 2$	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots $= 1 + 2i + 1 - 2i = 2$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ $(z-(1+2i))$ is a factor means $1+2i$ is a root $z^2-(\text{sum roots})x+\text{product roots}$
The complex number $x=1+2i \text{ is a solution of the equation}$ $x^3-3x^2+7x-5=0. \text{ Find the other solutions.}$ $1-2i \text{ is a root} \Rightarrow 1+2i \text{ is also a root}$ $\text{Sum of roots} = 1+2i+1-2i=2$ $\text{Product of roots} = (1+2i)(1-2i)=5$	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ ($z-(1+2i)$) is a factor means $1+2i$ is a root $z^2-(\text{sum roots})x+\text{product roots}$ Sum of roots $1+2i+(1-2i)=2$
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$ $z^2 - (\text{sum roots})z + \text{product roots}$	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots $= 1 + 2i + 1 - 2i = 2$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ $(z-(1+2i))$ is a factor means $1+2i$ is a root $z^2-(\text{sum roots})x+\text{product roots}$
The complex number $x=1+2i \text{ is a solution of the equation}$ $x^3-3x^2+7x-5=0. \text{ Find the other solutions.}$ $1-2i \text{ is a root} \Rightarrow 1+2i \text{ is also a root}$ $\text{Sum of roots} = 1+2i+1-2i=2$ $\text{Product of roots} = (1+2i)(1-2i)=5$	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots= $1 + 2i + 1 - 2i = 2$ Product of roots= $(1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ ($z-(1+2i)$) is a factor means $1+2i$ is a root $z^2-(\operatorname{sum roots})x+\operatorname{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$ $z^2 - (\text{sum roots})z + \text{product roots}$ $= x^2 - 2x + 5$	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots= $1 + 2i + 1 - 2i = 2$ Product of roots= $(1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ ($z-(1+2i)$) is a factor means $1+2i$ is a root $z^2-(\operatorname{sum roots})x+\operatorname{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$ x^2-2x+5
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$ $z^2 - (\text{sum roots})z + \text{product roots}$ $= x^2 - 2x + 5$ $x^2 - 2x + 5 x^3 - 3x^2 + 7x - 5$	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ ($z-(1+2i)$) is a factor means $1+2i$ is a root $z^2-(\operatorname{sum roots})x+\operatorname{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$ x^2-2x+5
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$ $z^2 - (\text{sum roots})z + \text{product roots}$ $= x^2 - 2x + 5$ $x^2 - 2x + 5 x^3 - 3x^2 + 7x - 5$	Example 5: Solving A Quartic Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots= $1 + 2i + 1 - 2i = 2$ Product of roots= $(1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ ($z-(1+2i)$) is a factor means $1+2i$ is a root $z^2-(\operatorname{sum roots})x+\operatorname{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$ x^2-2x+5
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ $\text{Sum of roots} = 1 + 2i + 1 - 2i = 2$ $\text{Product of roots} = (1 + 2i)(1 - 2i) = 5$ $x^2 - (\text{sum roots})x + \text{product roots}$ $= x^2 - 2x + 5$ $x^2 - 2x + 5 x^3 - 3x^2 + 7x - 5$ $- (x^3 - 2x^2 + 5x)$ $- x^2 + 2x - 5$	Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots= $1 + 2i + 1 - 2i = 2$ Product of roots= $(1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^3 + x^2 - x + 15$ $-(x^4 - 2x^3 + 5x^2)$ $x^3 + x^2 - x + 15$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ ($z-(1+2i)$) is a factor means $1+2i$ is a root $z^2-(\operatorname{sum roots})x+\operatorname{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$ x^2-2x+5
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ $\text{Sum of roots} = 1 + 2i + 1 - 2i = 2$ $\text{Product of roots} = (1 + 2i)(1 - 2i) = 5$ $x^2 - (\text{sum roots})x + \text{product roots}$ $= x^2 - 2x + 5$ $x^2 - 2x + 5 x^3 - 3x^2 + 7x - 5$ $- (x^3 - 2x^2 + 5x)$ $- x^2 + 2x - 5$	Find all complex numbers z, such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5 + x^4 - x^3 + 6x^2 - x + 15$ $-(x^4 - 2x^3 + 5x^2)$ $x^3 + x^2 - x + 15$ $-(x^3 - 2x^2 + 5x)$ $3x^2 - 6x + 15$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ ($z-(1+2i)$) is a factor means $1+2i$ is a root $z^2-(\operatorname{sum roots})x+\operatorname{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$ x^2-2x+5
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$ $z^2 - (\text{sum roots})z + \text{product roots}$ $= x^2 - 2x + 5$ $x^2 - 2x + 5 x^3 - 3x^2 + 7x - 5$	Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots= $1 + 2i + 1 - 2i = 2$ Product of roots= $(1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^3 + x^2 - x + 15$ $-(x^4 - 2x^3 + 5x^2)$ $x^3 + x^2 - x + 15$	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ ($z-(1+2i)$) is a factor means $1+2i$ is a root $z^2-(\operatorname{sum roots})x+\operatorname{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$ $z^2 - (\text{sum roots})z + \text{product roots}$ $= x^2 - 2x + 5$ $x^2 - 2x + 5 \mid x^3 - 3x^2 + 7x - 5$ $- (x^3 - 2x^2 + 5x)$ $- x^2 + 2x - 5$ $- (-x^2 + 2x - 5)$ 0	Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots= $1 + 2i + 1 - 2i = 2$ Product of roots= $(1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^3 + 2x - 2x + 15$ $-(x^4 - 2x^3 + 5x^2)$ $x^3 + x^2 - x + 15$ $-(x^3 - 2x^2 + 5x)$ $3x^2 - 6x + 15$ $-(3x^2 - 6x + 15)$ 0	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ $(z-(1+2i))$ is a factor means $1+2i$ is a root $z^2-(\text{sum roots})x+\text{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$ x^2-2x+5 $\frac{2z+1}{z^2-2z+5}$ z^2-2z+5 $-\frac{(2x^3-4z^2+10z)}{z^2-2z+5}$ $-\frac{(z^2-2z+5)}{0}$
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ $\text{Sum of roots} = 1 + 2i + 1 - 2i = 2$ $\text{Product of roots} = (1 + 2i)(1 - 2i) = 5$ $x^2 - (\text{sum roots})x + \text{product roots}$ $= x^2 - 2x + 5$ $x^2 - 2x + 5 x^3 - 3x^2 + 7x - 5$ $- (x^3 - 2x^2 + 5x)$ $- x^2 + 2x - 5$	Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ $\text{Sum of roots} = 1 + 2i + 1 - 2i = 2$ $\text{Product of roots} = (1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5 + x^4 - x^3 + 6x^2 - x + 15$ $-(x^4 - 2x^3 + 5x^2)$ $x^3 + x^2 - x + 15$ $-(x^3 - 2x^2 + 5x)$ $3x^2 - 6x + 15$ $-(3x^2 - 6x + 15)$ 0 Hence, we can write $x^4 - x^3 + 6x^2 - x + 15$ as	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ ($z-(1+2i)$) is a factor means $1+2i$ is a root $z^2-(\operatorname{sum roots})x+\operatorname{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$ x^2-2x+5 $\frac{2z+1}{z^2-2z+5} = 2z^2-3z^2+8z+5$ $-\frac{(2z^3-4z^2+10z)}{z^2-2z+5}$ $-\frac{(z^2-2z+5)}{0}$ $2z+1=0 \Rightarrow z=-\frac{1}{2}$
The complex number $x = 1 + 2i \text{ is a solution of the equation}$ $x^3 - 3x^2 + 7x - 5 = 0. \text{ Find the other solutions.}$ $1 - 2i \text{ is a root} \Rightarrow 1 + 2i \text{ is also a root}$ Sum of roots = $1 + 2i + 1 - 2i = 2$ Product of roots = $(1 + 2i)(1 - 2i) = 5$ $z^2 - (\text{sum roots})z + \text{product roots}$ $= x^2 - 2x + 5$ $x^2 - 2x + 5 \mid x^3 - 3x^2 + 7x - 5$ $- (x^3 - 2x^2 + 5x)$ $- x^2 + 2x - 5$ $- (-x^2 + 2x - 5)$ 0	Find all complex numbers z , such that: $z^4 - z^3 + 6z^2 - z + 15 = 0 \text{ and } z = 1 + 2i \text{ is a solution}$ $x^2 - (\text{sum roots})x + \text{product roots}$ Sum of roots= $1 + 2i + 1 - 2i = 2$ Product of roots= $(1 + 2i)(1 - 2i) = 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^2 - 2x + 5$ $x^3 + 2x - 2x + 15$ $-(x^4 - 2x^3 + 5x^2)$ $x^3 + x^2 - x + 15$ $-(x^3 - 2x^2 + 5x)$ $3x^2 - 6x + 15$ $-(3x^2 - 6x + 15)$ 0	Given that $(z-1-2i)$ is a factor of $2z^3-3z^2+8z+5$ solve the equation $2z^3-3z^2+8z+5=0$ $(z-(1+2i))$ is a factor means $1+2i$ is a root $z^2-(\text{sum roots})x+\text{product roots}$ Sum of roots= $1+2i+(1-2i)=2$ Product of roots= $(1+2i)(1-2i)=5$ x^2-2x+5 $\frac{2z+1}{z^2-2z+5}$ z^2-2z+5 $-\frac{(2x^3-4z^2+10z)}{z^2-2z+5}$ $-\frac{(z^2-2z+5)}{0}$

Cubics: A cubic with real coefficients either has

All three roots real:

- $(x real root 1)(x^2 (sum of real roots 2 and 3)x + (product of real roots 2 and 3))$ One root real and the other two form a complex conjugate pair:
- $(x real \, root)(x^2 (sum \, of \, complex \, conjugate \, roots)x + (product \, of \, complex \, conjugate \, roots))$

Quartics: A quartic with real coefficients either has: All four roots r

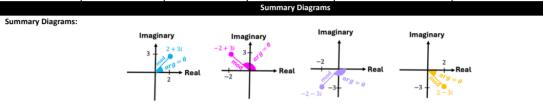
- $(x^2 (sum \ of \ real \ roots)x + (product \ of \ real \ roots)(x^2 (sum \ of \ real \ roots)x + (product \ of \ real \ roots))$ Two roots real and the other two form a complex conjugate pair:
- $(x^2 (sum of real roots)x + (product of real roots)(x^2 (sum of complex roots)x + (product of complex roots))$ Two roots form a complex conjugate pair, and the other two roots also form a complex conjugate pair: $(x^2 - (sum \ of \ complex \ roots)x + (product \ of \ complex \ roots)(x^2 - (sum \ of \ complex \ roots)x + (product \ of \ complex \ roots))$

Example 1	Example 2	Example 3	Example 4
ind a third-degree polynomial	Given that $2-i$ is a root of the equation,	$3z^3 + pz^2 + 57z + q$ where p and q are	Consider $x^4 + ax^3 + bx^2 + cx + d$,
vith integer coefficients that	$x^3 + ax^2 - 3x + b = 0$, where the	real constants	where $a,b,c\in\mathbb{R}$. Given that $1+i$ and
nas zeros 2—3 i and 1	constants a and b are real. Find the values	Given that $3 - 2\sqrt{2}i$ is a root of the	1-2i are zeros find the values of a, b
	of a and b	equation, find all the roots	c, and d
Zero 1	$2-i \Rightarrow$ conjugate $2+i$ is also a root of the	$3 - 2\sqrt{2}i \implies 3 + 2\sqrt{2}i$ is also a root	1+i and $1-2i$ are roots
	Sum of roots = $2 - i + (2 + i) = 4$	Sum of roots = 6	\Rightarrow 1 - i and 1 + 2i are roots
$2-3i \Rightarrow 2+3i$ is a root	Product of roots= $(2-i)(2+i) = 5$	Product of roots=17	Sum of roots = 2 and 2
	$x^2 - 4x + 5$	$z^2 - 6z + 17$	Product of roots=2 and -5
sum = 2 - 3i + 2 - 3i = 4			
Prod = (2 - 3i)(2 + 3i) = 13	$(x^2 - 4x + 5)(x - d) = x^3 + ax^2 - 3x + b$	$(z^2 - 6z + 17)(az + b) = 3z^3 + pz^2$	$(x^2-2x+2)(x^2-2x+5)$
		+ 57z + q	$= x^4 + ax^3 + bx^2 + cx + d$
$=(x^2-4x+13)(x-1)$	LHS:	LHS:	
	$x^3 - 4x^2 + 5x - dx^2 + 4dx - 5d$	$(z^2 - 6z + 17)(az + b)$	LHS:
	$x^3 + (-4 - d)x^2 + (5 + 4d)x - 5d$	$az^3 + bz^2 - 6az^2 - 6bz + 17az + 17b$	$(x^2-2x+2)(x^2-2x+5)$
	Compare coefficients with	$= az^3 + (b - 6a)z^2 + (-6b + 17a)z$	$= x^4 - 4x^3 + 11x^2 - 14x + 10$
	$x^3 + ax^2 - 3x + b$	+ 17 <i>b</i>	Comparing the coefficients with
	5 + 4d = -3		$x^4 + ax^3 + bx^2 + cx + d$
	4d = -8	Compare coefficients with $3z^3 + pz^2 +$	a = -4
	d = -2	57z + q	b = 11

Representation On An Argand Diagram The real part goes on the x axis and the imaginary part goes on the \boldsymbol{y} axis. Modulus and Argumen

Complex numbers have a length (modulus) and an angle (argument)

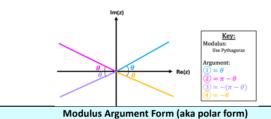
	th of complex number v	, , , ,	ne joining the complex n	umber to the origin
Algument - ang	gie (0) between the pos		o find the Modulus and A	
	4 Exa	imples	Tilla tile Wodulus alla F	Template Formula (read this after the examples)
	mber in the correct qua DHCAHTOA for the argu	drant, form a triangle at ment (remember you ca	,	$\label{eq:Given form } \mathbf{z} = \mathbf{x} + \mathbf{y} \mathbf{i}$ $\label{eq:Given form } \mathbf{z} = \mathbf{x} + \mathbf{y} \mathbf{i}$ $\label{eq:Given form } \mathbf{z} = \mathbf{x} + \mathbf{y} \mathbf{i}$
Example 1	Example 2	Example 3	Example 4	$\sqrt{x^2+y^2}$
2 + 3 <i>i</i>	-2 + 3i	2 - 3i	-2 - 3i	
Imaginary 3 + 2+3f 0 Property Property	Imaginary -2 + 34 3 4 Real	Imaginary 2 Real -3 + 2-3i	Imaginary -2 Real -2-3 -3-	To find the argument = $\arg(z)$: Step 1: $\tan^{-1}\left(\frac{+y}{+x}\right) \text{ where } -\pi < \theta < \pi$ Note: The green parts are always a plus
Form triangle with the \boldsymbol{x} axis	Form triangle with the x axis	Form triangle with the x axis	Form triangle with the x axis	Step 2: Draw $x + yi$ out to know which quadrant you're in.
E CENTRAL DE LA CONTRAL DE LA		The state of the s	e de la companya de l	Step 3: Read off the angle. To do this start from positive <i>x</i> axis and find the anticlockwise angle to find the value of theta. Remember the limits when finding the
modulus $length = \sqrt{2^2 + 3^2} \\ = \sqrt{13}$	modulus $length = \sqrt{2^2 + 3^2}$ $= \sqrt{13}$	modulus $length = \sqrt{2^2 + 3^2} = \sqrt{13}$	$\begin{aligned} & \textbf{modulus} \\ & \textit{length} = \sqrt{2^2 + 3^2} \\ & = \sqrt{13} \end{aligned}$	angle. The argument angle is always between $-\pi$ and π . This means we start on the x axis and can't go further than π in either direction (pos or neg)
argument $\tan \theta = \frac{3}{2}$	argument $\tan \theta = \frac{3}{2}$ $arg = 180 - 56.3^{\circ}$	$argument$ $\tan \theta = \frac{3}{2}$	argument $\tan \theta = \frac{3}{2}$	T Real



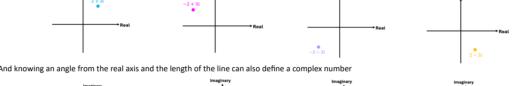
 $arg = 7 = -56.3^{\circ}$

n one diagram this looks like

 $arg = 4 = 56.3^{\circ}$



So far we have seen that points can be used to define a complex number (like in any coordinate system also known as a cartesian system)



Method To Convert Modulus Argument Form To Cartesian:

Modulus form does the following (turns cartesian into a modulus form) $x + yi \rightarrow r(\cos\theta + i\sin\theta)$ Method To Convert Cartesian To Modulus Argument Form:

We just need to find r and θ . To find r and θ using the following	
$r = \text{modulus} = \sqrt{x^2 + y^2}$	$r(\cos(\theta) + i\sin(\theta))$
$x + yi \Rightarrow \begin{cases} r = \text{modulus} = \sqrt{x^2 + y^2} \\ \theta = \text{argument} = \tan^{-1} \left(\left \frac{y}{x} \right \right) \end{cases}$	multiply out
Fill ${f r}$ and ${m heta}$ back into the form $r(\cos \ {m heta} + i \sin {m heta})$	$=r\cos(\theta)+ir\sin(\theta)$
	Then work out each trig value as a number

Negative angles (odd versus even) $\cos(-\theta) + i\sin(-\theta) = \cos(\theta) - i\sin(\theta)$ $z^* = r(\cos\theta - i\sin\theta)$

Turn into $-1+\sqrt{3}i$ into modulus-argument form	Turn into $2-4i$ into modulus-argument form	Turn $4\left(2\cos\frac{\pi}{2}-i\sin\frac{\pi}{2}\right)$ into Cartesian form
Imaginary	Imaginary	$4\left(2\cos\frac{\pi}{2} - i\sin\frac{\pi}{2}\right)$
√3 o Real	2 → Real	$4 \times 2 \cos \frac{\pi}{2} - 4 \times i \sin \frac{\pi}{2}$
	,	$=8\cos\frac{\pi}{2}-4i\sin\frac{\pi}{2}$
Modulus = $r = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{4} = 2$	'	Now work out each trig part
Let's draw for the modulus	$Modulus = r = \sqrt{(2)^2 + (-4)^2} = 2\sqrt{5}$ Let's draw for the modulus	$=8\cos\frac{\pi}{2}-4i\sin\frac{\pi}{2}$
$\theta = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \frac{\pi}{3}$ Argument = $\frac{2\pi}{3}$	$\theta = \tan^{-1}\left(\frac{4}{2}\right) = 1.11$	=8(0)-4i(1)
Plugging this into the form we get	Argument =	=-4i
	Plugging this into the form we get	
$2\left(\cos\left(\frac{2\pi}{3}\right)+i\sin\left(\frac{2\pi}{3}\right)\right)$	$=2\sqrt{5}(\cos(-1.11)+i\sin(-1.11))$	
	$= 2\sqrt{5}(\cos(1.11) - i\sin(-1.11))$	

	$= 2\sqrt{5}(\cos(1.11) - i)$	isin(-1.11)		
Multiplying and Dividing Properties				
Modulus Results:			Argument Results:	
$\bullet z_1z_2 = z_1 z_2 $		• $arg(z_1z_2) = arg(z_1$) + $arg(z_2)$.	
			ndices rules. When we multiply, we add the powers.	
$\bullet \begin{vmatrix} \underline{z_1} \\ \underline{z_2} \end{vmatrix} = \frac{\underline{z_1}}{\underline{z_2}}$		• $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1)$	$- \operatorname{arg}(z_2)$.	
$ z_2 $ $ z_2 $		This works like in	dices rules. When we divide. we subtract the power	
Multiplying Modulus Argumen	t Form:		ividing Modulus Argument Form:	
$[r_1(\cos\theta_1 + i\sin\theta_1)][r_2(\cos\theta_2 + i\sin\theta_2)] = r_1r_2[\cos\theta_1 + i\sin\theta_2]$	$s(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$	$r_1(\cos\theta_1+i\sin\theta_1+i\sin\theta_2+i\sin\theta_1+i\phi_1+i\phi_1+i\phi_1+i\phi_1+i\phi_1+i\phi_1+i\phi_1+i\phi$	$\frac{\ln\theta_1}{\ln\theta_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right]$	
Hence multiplying 2 complex numbers is the same a and adding their angles.	s multiplying their lengths	Hence dividing 2 com and subtracting their	plex numbers is the same as dividing their length angles	

angles by n (you'll learn De Moivre's in year 2)	
Example 1: Mod/Arg of Two Multiplied Complex Numbers	Example 2: Multiplying and Dividing in Modulus Argume
$z_1=3\left(\cos\left(\frac{\pi}{3}\right)+i\sin\left(\frac{\pi}{3}\right)\right)$ $z_2=\sqrt{2}\left(\cos\left(\frac{\pi}{12}\right)-i\sin\left(\frac{\pi}{12}\right)\right)$ Write down the exact value of i. $ z_1z_2 $ ii. $\arg(z_1z_2)$	$z=a+ib, \text{ where a and b are real constants}$ i. $ z^{10} =59049$ ii. $\arg(z^{10})=-\frac{5\pi}{3}$ Determine the value of a and the value of b
$z_1 = 3\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)$	If we know the mod and argument we can find z. Let's find this i.

 $|z^{10}| = 59049 \text{ hence } |z|^{10} = 59049$ $z_2 = \sqrt{2} \left(\cos \left(\frac{\pi}{12} \right) - i \sin \left(\frac{\pi}{12} \right) \right)$ $|z| = \sqrt[10]{59049} = 3$ $= \sqrt{2} \left(\cos \left(-\frac{\pi}{12} \right) + i \sin \left(-\frac{\pi}{12} \right) \right)$ $arg(z^{10}) = -\frac{5\pi}{3}$ $10\arg z = -\frac{5\pi}{2}$ $\arg z = -\frac{\pi}{\epsilon}$ hence $\tan \left(-\frac{\pi}{\epsilon}\right) = z$ $|z_1|=3$ and $|z_2|=\sqrt{2}$ $|z_1, z_2| = |z_1||z_2| = 3\sqrt{2}$

$ z_1 z_2 = z_1 z_2 = 3\sqrt{2}$	$rcos(\theta + isin\theta)$
$\arg(z_1) = \frac{\pi}{3}$ and $\arg(z_2) = -\frac{\pi}{12}$	$3\cos\left(\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$
$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) = \frac{\pi}{3} - \frac{\pi}{12} = \frac{\pi}{4}$	$z = \frac{3\sqrt{3}}{2} - \frac{3}{2}i$

 $-3\sin\frac{\pi}{\epsilon} =$ $z = \frac{3\sqrt{3}}{2} - \frac{3}{3}$

Type 1: Modulus = number gives a circle $|z-z_1|=k \ \Rightarrow$ circle centre z_1 and radius kace z_1 with a + ib|z-a|=k $|z-a|\leq k$ Shade OUTSIDE the SOLID circle A circle centre 'a' radius k Shade INSIDE the SOLID circle Shade INSIDE the DASHED circle $|z - (2 + 5i)| \ge 4$ $k_1 < |z-a| < k_2$ Shade BETWEEN the TWO DASHED $k_1 \leq |z-a| \leq k_2$ Shade BETWEEN the TWO SOLID $k_1 \leq |z-lpha| < k_2$ Shade BETWEEN the DASHED & Shade OUTSIDE the DASHED circle circles SOLID circle circles

Type 2: Arg = number gives a half line

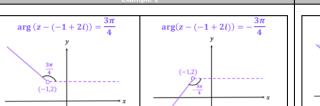
 $arg(z-z_1) = \theta$ is a <u>half line</u> from but <u>not including</u> the fixed point z_1 making an <u>anticlockwise</u> angle θ with a line from the fixed point z_1 **parallel to the real axis**

 $\arg((x+iy)-(a+ib))=\theta$ $e z_1$ with a + ib $\arg ((x-a)+i(y-b))=\theta$ $\tan(\theta) = \frac{y - b}{z}$ $y - b = \tan(\theta) (x - a)$

 $arg(z-a) \le \beta \text{ or } arg(z-a) \le -\beta$

half line starting at point 'lpha' (an undefined point \circ) at an angle of eta where $-\pi < eta < \pi$. The angle is anticlockwise or clockwise from the positive real axis (draw a dashed line parallel to x axis starting from the point) angle β or $-\beta$

Half line starting at point 'a' going clockwise at an angle less than or equal to the



 $arg(z-a)=\beta$

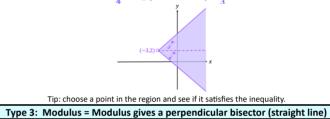
Note: we can have $0 < \beta < 2\pi$, but it's less common **e 1**

the the points a and b

A positive angle means we go

 $\arg\left(z-(-1+2i)\right)\leq \frac{3n}{4}$ $arg(z-(-1+2i)) \le -\frac{3n}{4}$

A negative angle means we go $-eta \le rg{(z-a)} \le \gamma$ Half line starting at 'a' between an angle of eta anticlockwise and γ clockwise $\frac{n}{4} \leq \arg\left(z - (-1 + 2i)\right) \leq \frac{n}{2}$



 $|z-z_1|=|z-z_2|$ is the perpendicular bisector of the line segment joining the points z_1 and z_2 . Notice how there is a modulus on either side ce z with x + i|(x+iy) - (a+ib)| = |(x+iy) - (c+id)|

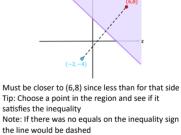
 $\begin{aligned} |(x-a)+i(y-b)| &= |(x-c)+i(y-d)| \\ \sqrt{(x-a)^2+(y-b)^2} &= \sqrt{(x-c)^2+(y-d)^2} \\ (x-a)^2+(y-b)^2 &= (x-c)^2+(y-d)^2 \end{aligned}$ -2ax - 2by = -2cx - 2dx

eplace z_2 with c + id

 $|z-a| \geq |z-b|$ The distance of z from a must be greater than or $|z-a| \leq |z-b|$ The distance of z from a must be less than or equal A straight line - Perpendicular bisector of the line joining

equal to the distance of z from b

Example 1	Example 2
z - (-2 - 4i) = z - (6 + 8i)	$ z - (-2 - 4i) \ge z - (6 + 8i) $
Plot the points (-2, -4) and (6,8) and then draw the perpendicular bisector which is the straight line with perpendicular gradient passing through the midpoint	(6.8)
(6.8)	(-2, -4)
*	Must be closer to (6,8) since less than for that Tip: Choose a point in the region and see if it

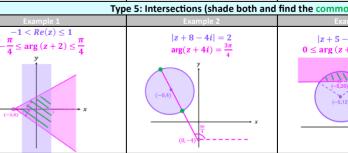


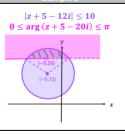
Must be closer to (-2, -4) since less than for that side Tip: Choose a point in the region and see if it satisfies the inequality Note: If there was no equals on the inequality sign the line would be dashed

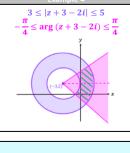
to the distance of z from b

 $|z - (-2 - 4i)| \le |z - (6 + 8i)|$

Type 4: Re(z) and Im(z) are vertical and horizontal lines Im(z) = Number is a horizontal line: Re(z) = Number is a vertical line Re(x + iy) = a is the line x = aIm(x + iy) = b is the line y = b $Im(z) \leq 2$ Type 5: Intersections (shade both and find the common/overlap region







 $3x^2 + 3y^2 - 3 = 0$

 $3x^2 + 3y^2 = 3$ $x^2 + y^2 = 1$

onds to a **circle** (0,0) radius

'hy? Some things may not be fami **Cartesian Equations And Unfamiliar Regions** |z - 3| = |z + i||z - 3| = 2|z + i||z + 2i| = |2iz - 1||z - 3| = |z + i|Notice how we have a number outside th Notice how we have a number inside the irstly replace z with x + iy |x + iy - 3| = |x + iy + i|modulus hence not a familiar circle Firstly replace z with x + iyirstly replace z with x + iy $arg(x + iy) = \frac{n}{6}$ |x + iy - 3| = 2|x + iy + 1i|Firstly replace z with x + iyGroup the real and imaginary parts Group the real and imaginary parts |x + iy + 2i| = |2i(x + iy) - 1|From the real and imaginary parts |x - 3 + iy| = 2|x + iy + 1i|Apply the modulus definition |x-3+iy| = |x+i(y+1)|roup the real and imaginary parts pply the modulus definition $\sqrt{(x-3)^2 + y^2} = 2\sqrt{x^2 + (y+1)^2}$ $x^2 - 6x + 9 + y^2$ $= 4x^2 + 4(y^2 + 2y + 1)$ |x + i(y + 2)| = |2xi - 2y - 1| $\sqrt{(x-3)^2 + (y)^2} = \sqrt{(x)^2 + (y+1)^2}$ Apply the modulus definition SOHCAHTOA says $tan \theta = \frac{opposit}{ordinary}$ Expand the brackets $x^2 - 6x + 9 + y^2 = 4x^2 + 4y^2 + 8y + 4$ $\sqrt{x^2 + (y+2)^2} = \sqrt{(-2y-1)^2 + (2x)^2}$ $x^2 - 6x + 9 + y^2 = x^2 + y^2 + 2y + 1$ $3x^2 + 6x + 3y^2 + 8y = 5$ $\sqrt{x^2 + y^2 + 4y + 4} = \sqrt{4y^2 + 4y + 1 + 4x^2}$ -6x + 8 = 2yCompleting the square $3(x+1)^2 - 3 + 3\left(y + \frac{4}{3}\right)^2 - \frac{16}{3} = 5$ $x^2 + y^2 + 4y + 4 = 4y^2 + 4y + 1 + 4x^2$ $y = \frac{1}{\sqrt{3}}x$ (half line)

-4 - -2 = a

Hence, we have

The third root is $\frac{1}{3}$

 $(z^2 - 6z + 17)(3z - 1)$

Finally, comparing the constant term:

d = 10

